四片式高分辨率视频摄远物镜光学系统设计

高兴宇^{1,2,3} 郁道银¹ 龙 跃² 萧泽新³

1天津大学精密仪器及光电子工程学院,天津 300072

² 柳州欧维姆机械股份有限公司, 广西 柳州 545005

3 桂林电子科技大学广西制造系统与先进制造技术重点实验室,广西 桂林 541004

摘要为了对斜拉桥表面缺陷进行远程检测,设计了四片式高分辨率视频摄远物镜光学系统。图像传感器是像元 尺寸为 1.4 μm×1.4 μm,靶面尺寸为 1/2.3"的 1400 万像素高分辨率互补金属氧化物半导体(CMOS)摄像机。为 了匹配摄像机分辨率,设计的像方分辨率为 357 lp/mm 的摄远物镜,焦距为 320 mm,相对孔径为 1/6.95,视场角为 1.379°。在物方可在 228 m 外分辨 2 mm 的线宽,能够满足对普通斜拉桥拉索检测的距离和分辨率要求。

关键词 光学设计;高分辨率摄远物镜;像差优化;斜拉桥;远程检测

中图分类号 O436 文献标识码 A doi: 10.3788/AOS201434.s122004

Optical System Design of the Four Lenses High Definition Video Telephoto Objective

Gao Xingyu^{1,2,3} Yu Daoyin¹ Long Yue² Xiao Zexin³

¹ School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China

² Liuzhou OVM Mechtronincs Incorporated Corporation, Liuzhou, Guangxi 545005, China

 $^{\scriptscriptstyle 3}$ Guangxi Key Laboratory of Manufacture System and Advanced Manufacture Technology,

Guilin University of Electronics Technology, Guilin, Guangxi 541004, China

Abstract In order to realize remote detection of surface cracks of cable-stayed bridges, a four lenses high definition video telephoto objective is designed. The image sensor is a complementary metal-oxide-semiconductor (CMOS) camera with a cell size of $1.4 \ \mu\text{m} \times 1.4 \ \mu\text{m}$, target surface size of 1/2.3'' and a definition of 14 megapixel. To match the design requirement of the camera, the definition on the image surface of the telephoto objective is designed as $357 \ \text{lp/mm}$, with a focal length of $320 \ \text{mm}$, the relative aperture of 1/6.95, and the angle of view field of 1.379° . On the object side, the telephoto objective has the capability to distinguish a line with width of 2 mm at a distance of $228 \ \text{m}$, which satisfies the distance and the definition requirement for the cable detection of normal cable-stayed bridges.

Key words optical design; high definition telephoto objective; aberration optimization; cable-stayed bridge; remote detection

OCIS codes 220.4830; 080.3620; 110.6770; 040.5160

1 引 言

在我国,斜拉桥已经成为了一种重要的桥梁形 式。由于斜拉桥使用过程中受到日晒、雨淋、冷热变 化等外界环境的影响,拉索及塔柱表面会逐渐出现 裂纹,极大地影响斜拉桥的安全,因此需要对斜拉桥 拉索及塔柱的表面裂纹进行全面的检测^[1-2]。目前 针对工程结构表面缺陷的检测的技术方法主要有电 测法^[3]、破损断裂性能评估^[3]、激光检测机器人检 测^[4]、近距离牵引摄像头检测^[5]、光纤应变检测^[6] 等,但是这些方法都具有局限性,在工程上还没有得 到普及。实际中对斜拉桥表面缺陷的检测主要还是 靠人工现场工作,有成本高、效率低、耗时长、危险性 大等缺点,目前急需一种安全、经济、高效、精确的检 测方法来弥补上述检测方法的缺陷。将图像检测法

作者简介:高兴宇(1981—),男,博士,副教授,主要从事先进光学成像技术及应用方面的研究。

E-mail: gxy1981@guet.edu.cn

导师简介: 郁道银(1945—), 男,教授,博士生导师,主要从事医学光电仪器方面的研究。E-mail: dyyu@tju. edu. cn

收稿日期: 2014-02-15; 收到修改稿日期: 2014-03-15

引入桥梁检测领域是近年来的重点研究的方向^[7-8],常用的有近距离采集图像法和远程视频检 测两种方法。近距离检测需要将摄像头通过爬升机 器人或者牵引机提升到拉索上^[5-7],检测速度较慢, 效率低,而且牵引机的轮子会损伤拉索表面。而远 程视频检测需要有高分辨率的摄远物镜来获取拉索 表面裂纹图像,目前我国国内在此领域的产品很少, 而法国司态结构监测公司的 SCANSITES 远程检 测系统在实际工程已有使用,但是成本较高,实际使 用效率较低。近年来对于摄远相机的设计研究主要 偏向于航空航天的长焦距、高分辨率、反射式光学系 统研究^[9-11],但是适合于工程用高质量摄远光学系

针对斜拉桥表面缺陷远程检测和监控对摄远光 学系统高分辨率的要求,本文设计了四片式高分辨 率视频摄远物镜系统。首先选择像元尺寸较小的 1400万像素高分辨率互补金属氧化物半导体 (CMOS)相机作为图像传感器;然后根据相机的分 辨率和靶面尺寸等初始条件,用高斯光学计算摄远 物镜的焦距、视场角、相对孔径、分辨率等基本参数, 并选择合适的光学结构作为初始结构。然后,使用 光学设计软件 OSLO 进行像差优化设计,通过焦距 缩放、减少镜片、更换玻璃等步骤逐步优化设计出符 合要求的四片式光学结构。最后通过点列图弥散圆 半径分析和像差容限分析。分析结果表明该视频摄 远物镜系统的分辨率达到了对斜拉桥拉索远程检测 要求,并且有成本低、结构简单等优点。

2 光学参数计算及初始结构选择

斜拉桥拉索上端是固定在几十米至上百米高的 索塔上,观测距离在100以外。由于拉索直径一般 为50~300 mm,为了提高分辨率,视场可以尽量减 小,只要能看全拉索的直径即可,因此本视频摄远系 统为小视场、高分辨率光学成像系统。为了能够观 测到尽可能细的拉索裂纹,希望摄远物镜像方图像 传感器的分辨率尽可能高,同时物镜的分辨率要与 图像传感器的分辨率相匹配。据此选择像元尺寸为 1.4 μm×1.4 μm、靶面为 1/2.3"的 1400 万像素 CMOS 相机,其对角线长度为 7.7 mm,即像方视场 $2\nu'=7.7$ mm。如选择焦距 f'=320 mm,则系统视 场角为 $2\omega = 2 \arctan(y'/f') = 1.379^\circ$ 。光学镜头的 分辨率一般用每毫米内能分辨的线对数来表示,单 位为 lp/mm。为确保镜头与图像传感器的分辨率 匹配,应使1个CMOS像元对应镜头像方的1条线 宽,即两个像元对应一个线对,那么光学系统像方分 辦率应为 $N = 1000/(2 \times 1.4) = 357$ lp/mm。摄远 物镜的分辨率用对像方接收器所能分辨的最小张角 φ 来表示,那么其像方极限分辨角为

$$\varphi' = 2\arctan\left(\frac{\sigma'}{f'}\right) = 2\arctan\left(\frac{0.0014}{320}\right) = 5.01338 \times 10^{-5^{\circ}} = 1.8048''.$$
 (1)

如果物方要求能够分辨出 2 mm 宽的裂缝,那 么观测距离应为

$$-L = \frac{1}{\tan(\varphi'/2)} = \frac{1}{\tan 0.9024''} =$$

228573 mm = 228.573 m, (2)

符合一般的斜拉桥拉索检测距离要求。因此光学系 统像方分辨率就取 $\sigma'=2.8 \mu m$,即N=357 lp/mm。 图 1 为摄远系统光学参数计算示意图。通过以上讨 论,确定了摄远系统基本光学参数,下面根据这些参 数选择合适的初始结构。本论文的初始结构选择了 Laikin 所著《Lens Design: Fourth Edition》第7章 中,焦距为f'=400 mm 的摄远物镜^[12],其光学结 构参数如图 2 所示,像差曲线如图 3 所示。

由图 2 所示的摄远物镜结构参数和图 3 所示的 像差曲线可知,虽然初始结构像差比较大,但是该光 学结构中使用了三片低折射率、低色散的氟冕玻璃 N-FK5和 N-FK51,因而具有较好的减小像差的潜力,只要合理地优化结构参数,即可达到较好的设计结果。

Gen	Setup Wave	elength Field	Points	Variable	es I	Draw On	Gro	Notes
Lens:	No name		Zoon	1	1 0	f 1	Ef1 4	00.028792
Ent b	eam radius 🛛 🗄	38.000000 Field	angle	5.000	0000	Primary	wav1n	0.587560
SRF	RADIUS	THICKNES	S APE	APERTURE RADIUS		GLASS		SPECIAL
OBJ	0.000000	2.5400e+21	2.2	2222e+20		A	IR	
1	413.169100	7.726680	43	128065	S	N-F	K5 C	
2	-507.776480	0.381000	42	. 409286	S	A	IR	
3	88.696800	17.950180	42	2.341053	S	N-FK	51 C	
4	-382.866900	13.888720	37	.373911	S	A	IR	
5	-250.477020	7.620000	31	.001008	S	S	F1 C	
6	247.403620	6.629400	29	9.358998	S	A	IR	
AST	0.000000	66.662300	27	.470013	AS	A	IR	
8	103.324660	11.772900	24	.610885	S	S	F1 C	
9	-63.426340	5.080000	23	3.145527	S	N-LA	F3 C	
10	47.495460	33.723580	22	.512702	S	A	IR	
11	53.814980	5.080000	26	5.760705	S	S	F1 C	
12	38.608000	5.107940	26	5.078116	S	N-F	K5 C	
13	78.303120	107.731560	25	.818887	S	A	IR	
IMS	0.00000	0.000000	35	.014117	S			

图 2 f' = 400 mm的摄远物镜结构参数

图 3 f'=400 mm 的摄远物镜像差曲线 Fig. 3 Aberration curves of telephoto lens with f'=400 mm

3 像差优化设计

3.1 焦距缩放及初步优化

第一步优化是对初始结构的焦距进行缩放,使 其焦距变为 f'=320 mm,并且将视场角调整为ω= 0.6895°,以符合上述初始结构计算的条件。再用光 学设计软件 OSLO 对各面曲率半径和间距进行优 化,优化后的像差曲线及调制传递函数(MTF)曲线 如图 4 所示。对比图 3 和图 4 可知,优化后球差、像 散、场曲、畸变和垂轴色差已经减小很多,由图 4(b) 可知,优化后分辨率达到了 300 lp/mm,还没有达到 357 lp/mm 的分辨率要求,所以还要进一步优化。

3.2 减少镜片、提高分辨率

图 4 所示结构中有 7 片镜片,为降低成本,希望 能够去掉若干镜片,同时还要进一步提高分辨率。

图 4 焦距缩放至 f' = 320 mm 的摄远物镜。(a)像差曲线;(b) MTF 曲线

Fig. 4 Telephoto objective when the focal length zoomed to f'=320 mm. (a) Aberration curves; (b) MTF curves

由于 N-FK51 的阿贝数为 84.47,比 N-FK5 的阿贝 数 70.40 大,所以考虑可以先删去 N-FK5 镜片,用 N-FK51 和其他玻璃材料镜片的组合来达到消色差 的水平。于是删去第一片和第七片 N-FK5 的镜片, 优化后像差曲线和点列图半径如图 5 所示。可知, 优化后系统对C光(波长为0.656μm)和F光(波长 为 0.486 µm) 消色差, 对 d 光(波长为 0.588 µm) 消 球差,垂轴色差小于 0.002 mm,畸变小于 0.05%, 像散和场曲也小于 0.01 mm。由图 5(b)可知,轴上

图 5 减少镜片后的光学结构。(a)像差曲线;(b)点列图半径

Fig. 5 Optical structure after the reduction of the lens. (a) Aberration curves; (b) radius of the spot diagram 点和轴外点的半径分别达到 3.3 µm 和 3.45 µm,比 上一次优化结果有所改善,但仍没有达到设计要求, 所以还要进一步优化。

进一步减少镜片,更换玻璃,完成优化设计 3.3

图 5(a) 所示结构中的第二、三、五片镜片都是 SF1 玻璃,可以考虑减去其中之一。经过实验,选择 了删去第三片镜片。为了更好地达到消色差效果, 将第四片 N-LAF3 玻璃更换为 N-FK51 玻璃,再经 过多次的结构优化,减小色差,构成了如图 6(a)所 示的结构。

图 6(a)右下角所示的结构中,第一片和第四片 为 N-FK51 玻璃,第二片和第三片为 SF1 玻璃,结 构较图 2 的初始结构少了三片镜片,成本降低,但是 分辨率明显提高。图 6(b)为点列图半径和像差数 据,其中第一行为轴上点列图半径值,第二行为边缘 视场点点列图半径值,第三列为像面近轴光线追迹 数据,第四行为色差数据,第五行为初级单色相差数 据,第六行为高级单色相差数据。图 6(c)为点列 图,其中黑色圆圈为艾里斑,可知,中心和边缘视场 的分辨率都达到或超过了 2.8 μm,可以与 CMOS 相机的分辨率匹配。图 6(d)为 MTF 曲线,可知,分 辨率刚好达到了 357 lp/mm,与前述计算要求相吻 合。由于系统视场小,点列图显示出轴上点各个视 场的弥撒圆都在艾里斑内部,且没有明显的彗差和 像散等像差,说明已经达到了衍射极限。

图 6 四片式视频摄远物镜结构及像质分析。(a)像差曲线;(b)点列图半径及像差数据;(c)点列图;(d) MTF 曲线图 Fig. 6 Configuration and imaging analysis of the four lenses telephoto objective. (a) Aberration curves; (b) data of spot diagram and aberrations; (c) spot diagram; (d) MTF curves

下面计算各像差公差。由图 6(b)中的第三行 近轴光线追迹数据可得知,无穷远轴上点子午光线 在像面的最大孔径角 $A_{PU} = -0.087508$,根据球差 公差 $\sigma_{L'_{pc}}$ 和轴向色差公差 $\sigma_{L'_{pc}}$ 的计算公式^[13]:

$$\delta_{L'_m} \leqslant \frac{\lambda}{n' \sin^2 u'_m},\tag{3}$$

$$\delta_{L_{\rm FC}^{\prime}} \leqslant \frac{\lambda}{n^{\prime} \sin^2 u_m^{\prime}},\tag{4}$$

式中 λ 为波长,可知 $\sigma_{L'_m}$ 和 $\sigma_{L'_{FC}}$ 都小于 0.07673 mm, n'为像方介质折射率, u'_m 为像方最大孔径角。并且 系统的相对慧差公差小于 0.0025 mm,而由图 6(b) 可计算本系统的球差、彗差、轴向色差分别为0.154、 0.285、2.253 μ m,这三种主要像差都远小于像差公 差。因此,该四片式摄远物镜系统像方分辨率都达 到了设计要求。

4 结 论

设计了焦距为 f' = 320 mm 的四片式高分辨率 视频摄远物镜,像方分辨率达到了 357 lp/mm,配合 像元尺寸为 1.4 μ m×1.4 μ m 的 1400 万像素高分 辨率 CMOS 相机,可以分辨出 228 m 以外的 2 mm 的线宽。与国外同类产品比较具有性能接近、成本 更低的优点,适合于作为商品化机型推广使用。在 成功的光学系统设计基础上,还要继续开发带有激 光测距仪和基于图像处理的拉索裂缝检测与控制软 件,构成完整的拉索裂缝远程检测系统。

参考文献

1 Deng Zhi. Survey and Analysis of Crack of Cable-stayed Bridge High Tower Column [D]. Chongqing: Chongqing Jiaotong University, 2010.

邓 智.斜拉桥高大塔柱裂缝监测及分析[D].重庆:重庆交通 大学,2010.

2 Fan Hong, Ke Yong, Tang Tang. Study on cable breakage and fracture of long span cable-stayed bridge [J]. Highway, 2010, (4): 164-169.

樊 鸿, 柯 勇, 唐 堂. 对大跨径斜拉桥拉索破损断裂性能的 研究[J]. 公路, 2010, (4): 164-169.

3 Gao Shuling, Xu Shilang. Critical concrete crack length determination using strain gauges [J]. J Tsinghua Univ (Sci & Tech), 2007, 47(9): 1432-1434. 高淑玲,徐世烺. 电测法确定混凝土裂缝的临界长度 [J]. 清华

尚赦母, 保世艰, 电测法确定准健工裂缝的临界长度 [J]. 清华 大学学报(自然科学版), 2007, 47(9): 1432-1434.

- 4 Yu Jiayong, Peng Wanghu, Zhu Jianjun, et al.. Research on the application of measurement robot to bridge inspection [J]. Central South Highway Engineering, 2007, 32(3): 33-36. 余加勇,彭旺虎,朱建军,等. 测量机器人在大跨径桥梁检测中 的应用研究[J]. 中南公路工程, 2007, 32(2): 33-36.
- 5 Zhao Qiang, Zhong Youming, Zhou Jianting. Remote crack monitoring system of bridge based on embedded technology and GPRS [J]. Journal of Chongqing Jiaotong University (Natural Science), 2010, 29(5): 685-687.

赵 强,钟佑明,周建庭.基于 GPRS 的嵌入式桥梁远程裂缝监测系统[J].重庆交通大学学报(自然科学版),2010,29(5):685-687.

6 Zhu Xinliang. Application of a High-Speed High-Precision Optical Sensor Technology in Bridge Monitoring [D]. Ji' nan: Shandong University, 2012.

朱新亮.一种高速高精度光纤传感技术在桥梁监测中的应用 [D].济南:山东大学,2012.

- 7 Song Pingli. Crack Detection of Bridge on Video Image [D]. Wuhan: Wuhan University of Technology, 2010. 宋平丽. 基于视频图像的桥梁裂缝检测[D]. 武汉: 武汉理工大学, 2010.
- 8 Xu Bing. A Study on the Bridge Diseases Inspection and the Cracks Measurement Based on the Imagery Processing Technology [D]. Xi'an, Changan University, 2009.

徐 兵.基于图像处理技术的桥梁病害检查和裂缝测量研究 [D].西安:长安大学,2009.

- 9 Li Xuyang, Li Yingcai, Ma Zhen, *et al.*. Optical system design of space camera with large *F* number and long focal length [J]. Acta Optica Sinica, 2010, 30(7): 2093-2097.
 李旭阳,李英才,马 臻,等. 大 F 数长焦距空间相机光学系统 设计[J]. 光学学报, 2010, 30(7): 2093-2097.
- Guo Yongxiang, Li Yingcai, Liang Tianmei, et al.. Optical design of the uncoaxial three-mirror system with wide field of view [J]. Acta Optica Sinica, 2010, 30(9): 2680-2683.
 郭永祥,李英才,梁天梅,等. 一种大视场离轴三反射光学系统 研究[J]. 光学学报, 2010, 30(9): 2680-2683.
- 11 Li Xuyang, Li Yingcai, Ma Zhen, *et al.*. Optical system design of space camera with long focal length and correction of image distortion [J]. Acta Optica Sinica, 2010, 30(9): 2657-2661.
 李旭阳,李英才,马 臻,等. 消畸变、长焦距相机光学系统设计 [J]. 光学学报, 2010, 30(9): 2657-2661.
- 12 M Laikin. Lens Design (Fourth Edition) [M]. Zhou Haixian, Cheng Yunfang, Transl. Beijing: China Machine Press, 2009. 84-85.

莱 金.光学系统设计(第四版) [M].周海宪,程云芳,译.北 京:机械工业出版社,2009.84-85.

- 13 Wang Zhijiang. Handbook of Practical Optical Technology [M]. Beijing: China Machine Press, 2006. 258-259.
- 王之江. 实用光学技术手册 [M]. 北京: 机械工业出版社, 2006. 258-259.

栏目编辑:韩 峰